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SECTION 1
INTRODUCTION

The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 cals for the
deployment of surface transportation technologies for Intelligent Transportation Systems
(ITS). A mgor purpose of ITS isto enhance the ability of this country to compete in the
global economy. Among the objectives of the ITS program are the improvement of
productivity and economic efficiency, the enhancement of transportation safety, the
facilitation of traveler mobility, and the meeting of environmental concerns. In order to
achieve these objectives, the ITS program is identifying advanced and emerging information,
communications, control, and electronic technologies that have the potential to improve
surface transportation.

The National 1TS Program Plan calls for the development and ultimate deployment of
twenty-nine interrelated user services. These user services are characterized in terms of the
benefits for different users rather than in terms of their underlying technologies. The user
services have been grouped into seven bundles as follows:

Travel and transportation management
Travel demand management

Public transportation operations

Commercia vehicle operations

Electronic payment

Emergency management

Advanced vehicle control and safety systems

Among the initiatives included in the National 1TS Program Plan is the conduct of
operational tests related to the various user services. These tests are conducted for a
prototype system on a scale smaller than full deployment over arelatively short period of
timein a“real-world” (as opposed to a controlled laboratory or otherwise contrived)
environment. One purpose of the tests is the evaluation of systems of ITS technologies that
are wholly or in part beyond the R&D stage, but not yet ready for full deployment. Another
purpose is the evaluation of user service benefits. Such evaluations will help to identify the
more promising services and technologies (in terms of their impacts on ITS program
objectives) for further development and deployment.

Multiple operational tests may be conducted for a particular user service. These tests are
evaluated to provide one or more outcome measures of interest. When evaluation results for
anumber of operational tests become available, then it may be possible to synthesize results
across tests to arrive at composite outcome measures. This synthesis process, called meta-
evaluation, can provide information that is useful for determining the value of full scale
deployment of an ITS user service. In addition, the utility of additional operational tests can



be determined by determining the statistical power of these tests and estimating the
probability that they will deliver results in a specified range.

11 PURPOSE OF STUDY

The purpose of this study is to develop a data fusion framework for the meta-eval uation of
ITS effectiveness. This framework provides a systematic capability for adjusting and
synthesizing data from different tests to:

Objectively synthesize evaluation measures and their uncertainties across multiple
tests

Identify the need for and characteristics of additional operational tests
Estimate input parameters (and their uncertainties) for simulation models

Provide ITS decision makers with information to guide decisions on the
development and deployment of ITS systems

1.2 ORGANIZATION

In the next section, we discuss operational test characteristics that have particular bearing on
meta-evaluation. In Section 3, desirable attributes of a meta-evaluation methodology are
discussed and meta-evaluation is placed in the context of the experimental paradigm. Section
4 discusses the various types of empirical data and their measurement, while Section 5
discusses experimental statistical biases. Statistical inference as applied to meta-evaluation is
discussed in Section 6. Finally, various approaches for data fusion are discussed in Section 7.



SECTION 2

CHARACTERISTICS OF OPERATIONAL TESTS

In this section, we discuss the differing characteristics of operational tests that may have an
impact on the development of a meta-evaluation methodology. The methodology must be
able to accommodate these differences.

Although different operational tests may involve the same I TS user service, the specific
technologies providing the user service may differ among the tests. For example, in-vehicle
route guidance systems (RGSs) may come in a variety of forms with varying accuracies for
vehicle location and different means of providing dynamic route guidance.

Test settings are also expected to vary widely. Operational tests for agiven ITS user service
may be conducted by different teams, in a variety of geographic locations, and in different
time frames. The mean characteristics of the populations under study (e.g., drivers using
RGSs) may vary among the tests. Prototype I TS services being tested might differ from the
one(s) that are ultimately deployed. Operational tests may also vary with respect to
experimental design and be subject to different study-specific biases. Finally, operational
tests may only provide indirect evidence of outcome measures of interest (e.g., closecallsin
place of accidents) and some of the tests may have gaps regarding certain outcome measures
of interest.

An operational test may include one or more empirical studies. For example, an operational
test for an RGS might involve an empirical study of yoked drivers (an equipped and an
unequipped vehicle traveling the same origin/destination trip at the same time of day). The
operational test may also support another empirical study of equipped and unequipped
drivers not specifically paired with each other. Still athird empirical study may involve in-
vehicle cameras to observe the details of driver interaction with the navigational device. All
of these studies may provide data with regard to outcomes of interest such as travel time or
safety. A relevant question then becomes how to merge results from these tests to draw
meaningful conclusions about an outcome of interest.

Because of the relatively small scales of operational tests, system-wide impacts of large scale
deployments may not be directly inferable from atest. For example, an operational test may
not directly provide information about the impact of larger market penetrations of RGSs on
traffic congestion or safety. Similarly, an operational test to evaluate weigh-in-motion
(WIM) technologies that facilitate commercia vehicle inspections may only provide direct
evidence of the time savings for an appropriately equipped commercial vehicle. The
systemic effects of time savings of non-equipped vehicles (because of shorter queues at
weigh stations) are difficult to measure directly. However, smulation or queuing models can
be used for this purpose. In such cases, an operational test is used to determine values of
some of the parameters for the calibration of a model. For example, operational tests for a
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WIM technology can provide data regarding the service times for vehicles in a weigh station
gueue; this data can then be used in a queuing model to determine the systemic impacts of a
specific level of WIM market penetration. When multiple operational tests or empirical
studies have been conducted, then “best” estimates of these parameters can be obtained by
merging results from the different sources. In addition, the “goodness’ of the estimate can be
inferred either from the parameter’ s probability distribution or from its variance.

2-2



SECTION 3
META-EVALUATION

The traditional focus of statistics has been the analysis and interpretation of individual
empirical studies. There are a variety of statistical methods appropriate for analyzing
empirical data from different experimental designs. These methods allow the analyst to test
hypotheses and to estimate parameters using approaches such as the maximum likelihood
technique or Bayesian analysis. On the other hand, the task of adjusting and combining
individual pieces of evidence from different studies has generally been left to subjective
judgment. Typicaly, evidence from different empirical studies has been used to form an
opinion-based impression regarding outcomes of interest.

The medical research community was among the first to recognize the need for a rigorous
analytica methodology to facilitate the objective fusion of results from different empirical
studies. Meta-eval uation techniques based on classical statistical methods have been
developed for this purpose. A representative sampling of these techniques may be found in
Wachter and Straf (1990). The techniques generaly apply to empirical studies with asingle
outcome of interest each of which is conducted using a common experimental design.
Moreover, it is generally assumed that there are no biases to either internal or externa
validity. These techniques involve ether the pooling of data across empirical studies from
which an outcome is computed or the combining of outcomes of a number of studies directly
on the basis of different weights. Other approaches based on Bayesian analyses have been
discussed by Eddy et a. (1990) and by Louis (1991).

3.1 REQUIREMENTSFOR A META-EVALUATION METHODOLOGY

Given the differences among operational tests cited in Section 2, there are a number of
desirable characteristics that should be present in a meta-evaluation methodology. The
methodology should be able to accommodate the incremental synthesis of evidence asit
becomes available from operational tests. Another requirement for the methodology is that it
be able to combine evidence from different tests not necessarily having a common
experimental design. The ability to adjust individual pieces of evidence for biasesisaso a
desirable feature. Finally, the methodology should be able to synthesize and incorporate
indirect evidence for outcome measures, and to quantify and incorporate subjective
judgments when necessary.

3.2 EXPERIMENTATION TO ASSESSITS SERVICES

In order to further establish abasisfor ITS meta-evaluation, it is necessary to understand the
role of the experimental paradigm in the conduct of operational tests. Operational teststo
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assess I TS services are intended to take place in a“real world” context. From purely the
perspective of evaluation, ITS operational testing should ideally be conducted as an orderly
and controlled experimental process. However, this ideal experimental paradigm is often
difficult to achieve. Attempts to conduct fully controlled experiments may fall short of
expectations. Since I TS systems involve human subjects, it is often difficult to create and
maintain an ideal experimental environment. In Appendix A, we discuss the experimental
paradigm as applied to the physical, biological/medical, and socia sciences in order to
provide a context for the following discussion of operational tests.

Population samples chosen for an operational test may include one or more experimental
populations, which are subjected to various versions of an ITS technology, and a control
population that does not use the technology. In some cases, a control population is not a part
of the operational test. Instead, data may be collected with respect to a background
population independent of the operational test. For example, an operational test may be
conducted for a collision avoidance technology with only an experimental population. The
impact of the technology may be discerned by comparing the accident rates of the
experimental population with those of a background population collected from insurance
statistics.

Experimentation as applied to ITS operational tests resembles the experimentation of the
biomedical or social sciences rather than that of the physical sciences. The experimental
environment may be imperfect and adjustments may be required to correct for biases and
other problems. Quantitative evidence from either the operational test or external sources
may be used to estimate these adjustments while, in some instances, the estimates may be
subjective. In this latter case, sensitivity analyses may be conducted to determine the
criticality of the subjective assumptions on outcomes.

A bias can occur within an operational test when there are differences between the
experimental and control groups. For example, in an empirical study for an RGS the mean
age of the experimental group using the navigational device might be different from the mean
age of the control group. These age differences may partially account for differencesin
outcomes of interest so that the true effect of an ITS technology can be obscured. Thisis an
example of abiasto internal validity.

Even if there are no differences between the control and experimental groups, their
characteristics may be different from the population at large. For example, the drivers
selected to partake in an RGS operational test may not be representative of the population as
awhole. In this case, a comparison of outcomes between the experimental and control
groups may not be a true representation of the effect of atechnology in the genera
population, thus leading to a bias in external validity.

There may also be a bias to external validity when there are differences between a prototype
ITS technology undergoing operational testing and the actual technology that will be
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deployed. The impact of the ITS technology under operational test may be different from the
deployed technology.

In each of the examples cited above, statistical corrections must be made, whenever possible,
to adjust for problemsin the experimental environment.
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SECTION 4

EMPIRICAL DATA AND ITSMEASUREMENT

The purpose of an empirical study is to measure or otherwise characterize some empirical
phenomenon in order to identify patterns, underlying laws of behavior, or explanations of
outcomes. An important activity in the conduct of an empirical study involves the collection
of data. Data collection and its processing is discussed in Appendix B. A datumis a
measurement of an attribute of some subject of study, called a unit of observation. An
attribute is afeature or property of interest associated with the unit of observation. The
attribute may refer to either an outcome or an explanatory factor that is believed to affect an
outcome for the unit of observation. The collection of attributes for a single unit of
observation is called an observation.

For example, the unit of observation for an RGS operational test might be an individual
driver on a specific origination/destination trip and the test may involve many such units of
observation. The data collected for such atest can include outcomes such as travel times and
travel distances, as well as explanatory variables such as the time of day the trip was
undertaken, driver age, gender, and driving experience.1

For the purposes of modeling, the outcomes and explanatory factors are represented by
variables. Measurement is the process of assigning values to these variables through the
empirical observation of each unit of observation. The variables may be related by functional
relationships that can be expressed by means of equations. For example, the outcome
variable of travel time may be assumed to be functionally related to the specific
origination/destination trip, the time of day the trip was undertaken, driver age, gender, and
driving experience. In this case, the outcome variable is said to be an endogenous variable
while the explanatory variables are exogenous variables. If a particular functional

relationship is hypothesized, then it can be empirically tested by using the data that was
collected across the units of observation.

1 The classification of a datum as an outcome is in part dependent on au implicit model of the relationships
among the data and the purposes of the empirical study. In some cases, au outcome in one model will be the
explanatory variable in another. Variables may be equivaently classified as exogenous (i.e., explanatory) or
endogenous (i.e., explained). Whether or not a variable is endogenous then depends upon its use in a model
or submodel.



41 DATA TYPES

Identifying a variable by its data type establishes the rules by which a variable is measured.
In this study, we use a typology of three major data types, namely:

Continuous
Integer counts
Categorical

As will be discussed below, the data type of an outcome or endogenous variable determines
the types of statistical techniques that can be applied to its analysis.

4.1.1 Continuous Data Type

A variable that is continuous is one that is defined on all or part of the scale of real numbers.
Travel time, expressed in minutes, or travel distance, expressed in miles and fractions
thereof, are continuous variables defined between zero and infinity.

4.1.2 Integer Count Data Type

The count data type is appropriate for variables with an integer scale. Examples of such
variables are the number of wrong turns or the number of “close calls” experienced by a
driver during a specific origination/destination trip in an RGS experiment.

4.1.3 Categorical Data Type

The categorical data type is appropriate for variables whose values represent distinct
categories. A variable may be dichotomous, having two categories, or polychotomous with
more than two categories. An example of a dichotomous variable may be one measuring
failure or success in some activity. For example, observing a group of drivers over some
time period, a success might be defined for a specific driver as the absence of an accident
during this period, while afailure would be the occurrence of one or more accidents in the
same period. Polychotomous categorical variables are represented in the transportation
literature by modal choices among multiple transportation aternatives Rassam et a. [ 1971].
For example, an automated traveler information system may affect the choices of air travelers
who have four aternatives for getting to the airport: private automobile, taxi, bus, or rail.

The modal classification of transportation aternatives isan example of a categorical variable
that has no implied underlying ordering to the categories. Each value is a distinct category
that serves as alabel for the category. A variable of thiskind is called a nominal categorical
variable.

An example of a categorical variable with an implied underlying ordering is one
characterizing the severity of a vehicle accident. The categories might be: vehicle damage
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only, personal injury, and fatality. In this case, it is possible to rank-order the categories
according to some criterion, namely, accident severity. Each category possesses a unique
position relative to the other categories. However, we do not know the “distance” between
categories. A categorical variable with this property is an ordinal categorical variable.

414 Levesof Measurement

The different data types discussed above represent a hierarchy of levels of measurement. The
categorical datatypeisthe “lowest” level of measurement in the sense that the “higher” levels
of measurement can be subsumed into the lower levels. Thus, a count can be subsumed in a
categorical measure by grouping counts into two or more categories. For example, a
population of drivers with an age distribution may be classified into three groups. 16-25
years, 26-40 years, and >40 years. Similarly, a continuous variable may be subsumed in a
count or a categorical measure. For example, age is inherently a continuous variable if
measured by years and fractions thereof. But for conceptual convenience, age is usually
expressed as a positive integer.
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SECTION 5
STATISTICAL BIASES

The meta-evaluation problem of combining results across operational tests is complicated by
the expectation that operational tests may have statistical biases. In the ideal, an empirica
study should be conducted such that its results, given the test circumstances, are atrue
reflection of the impact of atechnology. However, the characteristics of the experimental
and control groups may differ and these differences may, in part, contribute to the outcomes.
Consequently, the true impact of the technology might not be discerned. In such cases, those
factors that cause the evaluation measure to inaccurately reflect the impact of the technology
in the test circumstances contribute to biases of internal validity.

On the other hand, if the operational test circumstances differ from the expected deployment
circumstances, then the operational test may lack external validity. There may be no
substantive differences between the experimental and control groups, but their characteristics
may be different from the characteristics of the population that will ultimately be using the
deployed ITS technology. In such cases, directly applying the results from the operationa
tests to the deployment population is not reasonable without first adjusting for biases to
externa validity.

When results from different operational tests are to be combined, it isfirst necessary to
ensure that the individual operational tests are internally valid. Since the test circumstances
for all of the tests may not be the same, combining the tests without further adjustments may
lead to comparability biases. In such cases, there are three courses of action. We may argue
that the biases are small enough so as not to materially affect the evaluation measures. At the
other extreme, we can argue that the biases are so large and uncorrectable as to make the
operational test useless for application to the target circumstances. Or, we may try to adjust
the experimental results to account for the biases.

For the last course of action, the factors potentially biasing an experiment must be identified.
The directions of these biases need to be established, an attempt made to quantify their
magnitudes, and a model built to incorporate the biases into the analysis. We discuss the
various types of biases in greater detail in the following subsections.

51 BIASES TO INTERNAL VALIDITY
The difference between an outcome for an experimental group and that for a control group,

called ameasure of effect, may be caused by biases to internal validity. Biases to internal
validity include:
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Dilution of the experimental sample
Contamination of the experimental sample
Errors in measuring the outcomes
Confounding factors

Censoring (loss to follow-up)

To correct for biases to internal validity, models are required that relate the biased outcomes
to the outcomes of interest (by way of additional parameters, if necessary). In the following
subsections, we discuss examples of these various biases to internal validity.

5.1.1 Dilution

Dilution may occur when some of the individuals in the group using a technology do not
actually use it. This situation can occur for any number of reasons. There may be willful
intent on the parts of some individuals not to use the technology. In comparing accident
mortality rates for drivers of seatbelt equipped vehicles with those without seatbelts, we must
consider the possibility that some drivers may choose not to use their seatbelts. In this case,
estimates of the reduction of vehicular accident mortality attributed to seatbelt use may be
biased downward.

The equipment supporting a technology may be in “fail-mode” for certain periods of time.
For example, communication failures or overloads may result in non-functional driver
navigation aids during certain periods. In such cases, the driver may respond like a driver in
a non-equipped vehicle.

5.1.2 Contamination

Contamination occurs when individuals who are not supposed to be exposed to a particular
application of an ITS technology (e.g., in the control group) manage to get it on their own.
Consider an experiment to determine the effects of different levels of training on the effective
use of an ITS technology. One group may receive a high level of training, another group
only amoderate level, and athird group no training at all. The groups with moderate or no
training can introduce contamination by otherwise obtaining additional training on their own.
In this case, the effect of training on outcomes would be biased downward.

5.1.3 Measurement Errors

The method used in the measurement of an outcome may not be accurate. If accident rates
for a baseline group are obtained from insurance records, the rates may be biased downward
since not all drivers may have insurance and not all accidents may be reported. Therefore, an
accident rate comparison of an experimental group using a technology against a baseline
group may lead to downward bias when measuring the effect of the technology on accident
rates.

5-2



5.1.4 Confounding Factors

Confounding occurs when there are differences between the experimental and control groups
other than in the application of an ITS technology. These differences may relate to the
setting, to environmental differences, or to the characteristics of the individuals in the two
groups. If the experimental group using the technology differs from the control group on the
basis of some characteristics of the individuals and these characteristics can affect an
outcome, then the effect of the characteristics might be falsely attributed to the effect (or lack
of effect) of the technology. Selectivity bias is an instance of a confounding factor. For
example, an individual may self-select or be selected by the experimenter with respect to one
or more factors that can influence outcomes.

5.1.5 Censoring

Individualsin either an experimental or control group may drop out before completion of the
experiment. If these individuals are different than the group as a whole with respect to their
contributions to an outcome, then the outcome estimated from the remaining individuals may
not represent that of the whole group. An experimenta group for an RGS test may
experience attrition as participants who experience difficulties using the equipment either
discontinue its use or otherwise drop out of the testing program. This is an example of
censoring and appropriate statistical techniques should be applied to account for it.

52 BIASESTO EXTERNAL VALIDITY

Differences that could affect outcomes between the operational test circumstances and those
of the actual deployment may lead to biases to external validity. Biases to external validity
also come into play when comparisons are made across experiments. These biases can be
classified as population bias or technology bias.

5.2.1 Population Bias

Population bias occurs when there are differences between the experimenta population of the
operational test and the expected target population for the deployed ITS technology. For
example, a population bias might arise if the group used to test a collision avoidance
technology differs substantially from the general population of driversin terms of age or
gender composition. The measure of effect from such an experiment cannot be directly
applied to the general population without adjustments.

5.2.2 Technology Bias
Differences between the I TS technology used in the operational test and the one that will

ultimately be deployed may lead to a technology bias. If an operational test is conducted for
an RGS based on GPS technology, then measures of effect, such as travel time, may be
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different from those of a planned deployment of RGS using DGPS. Since the two systems
differ with respect to locational accuracy, the probability for driver error (leading to wrong
turns) may be greater for the GPS system, resulting in longer travel times.

5.3 COMPARABILITY BIAS

When conducting a meta-evaluation, the measures of effect across tests that are to be
combined must be comparable. In order for these measures to be comparable, they must first
be adjusted to correct for internal biases. Ideally, there should be no differences among the
operational test circumstances that could affect the comparability of the measures of effect.

If differences exist, then appropriate adjustments must be made to account for these
differences, thus correcting for comparability bias. The measures of effect for the individual
tests may then be adjusted for additiona biases to external validity and combined, or they
may be combined and then adjusted for these biases.

Comparability bias may be caused by differences in measurement across operational tests.
These differences in many cases are definitional in nature. For example, several operational
tests for RGSs may provide data on driver behavior such as the number of near accidents or
close calls. These measures might be defined differently among the operational tests and,
therefore, must be adjusted in order to achieve comparability.

Finally, differences across operational tests with respect to the time durations over which the
tests are conducted can lead to a comparability bias if the definition of an outcome of interest
depends on the time period. For example, the accident rates associated with a study
conducted over a one year time period would differ from those of a six month study. The
results of these operational tests again need to be standardized with respect to the time
interval in order to make them comparable to each other. Moreover, the seasonal interval
over which the six month study was conducted may require additional adjustments to the
accident rates.
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SECTION 6
STATISTICAL INFERENCE

In the absence of the various biases discussed previoudy, the merging of results across
operational tests is relatively straightforward. Outcomes and measures of effect derived from
operational tests are random variables. This randomness can be represented by means of
parameterizcd probability distributions. Given empirical data on outcomes (and possibly
explanatory variables) for units of observation from one or more operational tests, a
likelihood function can be specified. The likelihood function represents the probability of
observing the actual empirical outcomes of the units of observation associated with the
operational tests. If the outcome for one unit of observation is statistically independent from
the outcome of another (i.e., the usual case), then the likelihood function can be expressed as
a product over the units of observation of the probability distributions evaluated at each
outcome.

The likelihood function depends upon the parameters of the probability distributions. The
values of these parameters determine the shape of the probabilities and hence of the
likelihood function. Given the likelihood function, two approaches exist for the estimation
of these parameters. The maximum likelihood approach selects parameters so as to
maximize the likelihood function. This approach gives point estimates for the parameters
and their associated standard deviations.

An dternative is to use the likelihood function as part of a Bayesian analysis to determine a
distribution function for the parameters. The means and standard deviations of the
parameters can then be computed from the distribution function.

If biases are present, then the likelihood function must be appropriately adjusted. In the next
three subsections, we initially consider the case of no biases for each of the three data types.
Likelihood functions are established for continuous, count, and categorical data types.
Subsection 6.4 discusses two aternatives for the estimation of the parameters of the
likelihood functions.

6.1 CONTINUOUS DATA TYPE

Outcomes that are continuous data types defined between +ooare often characterized by
normal probability distributions. Many continuous outcome variables are distributed in such
away as to have at least an approximately normal distribution?. For an ITS operational tet,
with an outcome zi associated with the ith individual (i=l,...,n) in asample of nindividuals,
the normal probability distribution is:

2 Exceptions exist to this statement. For example, if an outcome variable were the mean time between events
(such as failures of a system) then an exponential or Erlang distribution might be more appropriate.
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where 1 and 62 are the associated mean and variance of the distribution, respectively.
Assuming that all of the observations are independently and identically sampled from the
same normal probability distribution, then the likelihood function is the product of the

probabilities for the individual observations (ignoring the \j 27) :

Lzl po?) = f[PrN(z I,0)
i=1 ]
= o2, ) @
where z = (21, 23, ..., Zn ). -

To illustrate, an outcome variable might be the trip time associated with a sample of drivers

using an RGS on a specified O/D trip. The trip time is a continuous variable, but it is defined
on the interval between 0 and oo, If Tjis the trip time for the ith individual then the outcome
zi might be defined through the transformation z; =In(Tj). This transformation yields a z; that

is continuous and is defined on the interval oo, allowing the use of a normal probability
distribution. In this case Tj is said to be log-normally distributed. In some instances, a
normal distribution is a good approximation for a log-normally distributed outcome such as
Tj. If the mean trip time is much greater than the standard deviation of the trip time, then trip
time itself can be assumed to be normally distributed. In this case, the area under the left tail
of the normal distribution for T;j < 0 would be extremely small.

6.2 COUNT DATA TYPE

If an outcome is expressed as a count data type, then it may be described by a Poisson
probability distribution. For an ITS operational test, with an outcome zj associated with the
ith individual (i=1,...,n) in a sample of n individuals, the Poisson probability distribution is:

Z;
Prp(z IA) = exp(-A) 72“—1, 3)

where A is the expected number of counts. Assuming that all of the observations are

independently and identically sampled from the same Poisson probability distribution, then
the likelihood function is the product of the probabilities for the individual observations
(ignoring the z;!):
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An example of an outcome variable with the count data type is the number of near-accidents
experienced by drivers using an RGS or the number of wrong turns that are made.

6.3 CATEGORICAL DATA TYPE

We have previously classified variables of the categorical data type as being dichotomous
(i.e., two categories) vs. polychotomous (i.e., more than two categories), on one hand, and
nominal (i.e., no implied ordering) vs. ordinal (i.e., implied ordering) on the other hand. In
the next two subsections, we discuss the likelihood functions for the dichotomous and
polychotomous categorical data types. The likelihood functions can be used for either
nominal or ordinal categorical data.

6.3.1 Dichotomous Categorical Data Type

Suppose an ITS operational test has some categorical outcome that is dichotomous. The
categories can be labeled by "A" and "B." The outcome for the ith individual (i=1,2,...,n) in
a sample of n individuals can be represented by a binary variable, x;, such that :

xi =0 ifindividual is in category A
=1 if individual is in category B

Let 6 be the probability that an individual in the sample has x; =0. Then the probability for
the individual to be in category A is

Pr(xi=010)=0

while the probability to be in category B is
Pr(xi=110)=1-0

Note that Pr (xj=010)+Pr(x;=1108)=1.

For the sample of n individuals, the probability that s of them have x; = 0 (i.e., in category A)
is given by a binomial distribution. Letting X be a random variable representing the number
of individuals in category A, then:

n!

Prg(X=s16,n) = ST(n-sT)

65 (1 - g)ns )

6-3



The likelihood function for the sample of n observations, s of which are in category A and
(n-s) of which are in category B, is then given by (ignoring the factorial terms):

L(X=s10,n)=068(1-06)n-s (6)
6.3.2 Polychotomous Categorical Data Type
If a categorical outcome is polychotomous with q categories, then the outcome for the ith

individual (i=1,2,...,n) in a sample of n individuals can be represented by a multinomial
variable, x;, such that:

1 if individual is in the first category
2 if individual is in the second category

=q if individual is in the qth category
Let 9; be the probability that an individual i in the sample has xj = j where j=1, 2,....q:
Pr(xi=j10)=6;

where 6 = (0, 62, ....8g) and

q q
SPrixi=jl0)=2 6 =1 M
i=1 j=1

For the sample of n individuals, the probability that s1 are in the first category, sy in the
second category, and sq in the gth category is given by a multinomial distribution. Letting
Xj (7=1,2....,q) be random variables representing the numbers of individuals in categories j
(G=1,2,...,9), then:

%! 952 qu 3)

Prm(X1=s1, X2=82,..., Xq=8¢q 16, n) = ———81‘82' s 19

The likelihood function for the sample of n observations is then given by (ignoring the
factorial terms):

LX=s106,n) = 6?1 6;2..624 )

6-4



6.4 SOLUTION METHODOLOGIES

In the following subsections, we discuss aternative methods to estimate the parameters
associated with the likelihood functions discussed above. There are two basic approaches for
parameter estimation:

. Maximum likelihood technique
. Bayesian analysis

The approaches are discussed in terms of a generic likelihood function denoted by

L(XI®) where X is a vector of observed test outcomesand @ = (91,92, . . . , §p) is the vector
of associated likelihood function parameters.

6.4.1 Maximum Likelihood Technique

The maximum likelihood technigque revolves around the selection of parameter values such
that the likelihood function is maximized. The values of the parameters accomplishing this

maximization are point estimates denoted by . The parameters of the likelihood functions
discussed in the previous sections are al continuous so that differential calculus techniques
may be used to find their values.

It is generally convenient to work in terms of the natural log of the likelihood function
defined by:

LL(X [®) = In[L(X |D)] (10

Since taking the logarithm of the likelihood function is a monotonic transformation, the
parameter values that maximize the logarithm of the likelihood function will also maximize
the likelihood function. The advantage of the logarithmic transformation of the likelihood
function isthat it converts products into sums which are easier to manipulate.

Thus, the parameter values that maximize the log-likelihood function are found by solving
the equations:

Bi(b-LL(XId))ZO fori=1,....p (11)

1

for &. The solutions to eguation (11) are guaranteed to maximize the likelihood function if

the Hessian, which is the matrix of the second partial derivatives with respect to @ of thelog-
likelihood function, is negative semidefinite. Equations (11) are generally not solvable
through analytical means and must be solved by means of numerical iterative techniques.
The Hessian may also be used to estimate the variances and covariances of the parameters as
well as the associated confidence intervals. A discussion of these techniques is beyond the
scope of this paper but the interested reader may refer to Kendall and Stuart [ 1961].
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6.4.2 Bayesian Analysis

The Bayesian approach also starts with a likelihood function associated with the outcomes of
some operational test. However, unlike the maximum likelihood technique, Bayesian
analysis provides probability distributions for the parameters. The expected values and
variances of the parameters can then be estimated from these distributions. The Bayesian
approach requires that prior distributions be initially specified for the parameters. If the
analyst initially has no information about the parameter values, then a non-informative prior
distribution can be chosen to indicate his total ignorance about the these values. On the basis
of the likelihood function and the prior distribution, a posterior distribution can be computed
that represents the probability distribution of the parameters. If results from a second test
become available, the posterior distribution computed from the first test becomes the prior
distribution that is input into a Bayesian analysis to incorporate the second test.

Let the prior distribution for the parameters be denoted by pr(®). If the parameters are
independent, then

p
pr(d) = H pr(¢y) (12)

where pr(¢;) is the prior distribution associated with ¢; , i =1, ...,p. Then the joint posterior
distribution for the parameters is given by:

P(® | X) = cL(X |1D)pr(P) (13)

where c is a normalizing constant chosen to ensure that the integration of P(®) over the
parameter space equals unity.

Suppose the results from a second test subsequently became available. Then the posterior
distribution from the first test (denoted by P (®)) is used as a prior distribution for the
second test. Let L(X; |®) be the likelihood function for the ith test (i=1,2). Then the
posterior distribution of @ for the second test is given by:

P2(® 1 X 2) = ol X 2|P)Py(P) (14)

where c; is chosen to normalize P2(®) to unity. Substituting equation (14) into (13), we then
get:

Pr(®1X 1, X 2) =cac) LX 2l®)L(X 11D)pr(D) (15)

Equation (15) thus allows us to pool data across multiple experiments. The pooling of data is
further discussed in Section 7.1.
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SECTION 7
DATA FUSION

In the following sections, we discuss various approaches for the fusion of data across tests.
Under ideal conditions, the following assumptions hold for two operational tests:

* Assumption A: The data of the two tests is identically sampled from the same
probability distribution

* Assumption B: The observations of the two tests are independent

* Assumption C: There are no biases to internal validity, external validity, or
comparability

In the next subsection, we discuss the pooling of data from two operational tests when all
three of the above assumptions hold. In the subsequent subsections, we relax various
combinations of the assumptions. The analysis of controlled experiments is discussed in
subsection 7.2. Subsection 7.3 brings into play potential biases and the adjustments that can
be made for them. In subsection 7.4, we discuss the fusion of data across empirical studies.

7.1 DATA POOLING

Suppose that we have two operational tests such that assumptions A, B, and C hold:
Under these circumstances, we show below that for the likelihood functions discussed in
subsections 6.1-6.4, the data from the individual operational tests can be pooled and treated
as if they came from a single test.

For continuous outcomes, with outcomes denoted by z' = (z'1, 22, ..., Z'n ) described bya

normal distribution, the likelihood function for the two tests combined is just the product of
the individual likelihoods given by:

L(z, z' | 1,69 =L(z | 1,62 L(z' | 1,62

n m
1 ( P )2 ( ' )2
—exp(- ) TR N @iy (16)
i=1 i

on
i=1

For outcomes that are integer counts following a Poisson distribution, the likelihood function
for the two tests combined is given by:

Lz, z' |A)=L{(z | A)L(z' | )
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= exp(-(n+m)A) 7&,(';1” & 17

Once again, we sce that the data from individual operational tests can be pooled and treated
as if they came from a single test.

For dichotomous data, given a second operational test consisting of m units of observation, s'
of which are in category A and (m-s') of which are in category B, the joint likelihood
function is given by

L{X=s, X'=s'10, n+m) = L(X=s | 0, n) LX'=s' | 6, m)

= @s+s’ (1- g)n+m-s-s‘ (18)

demonstrating that data from individual operational tests can be pooled and treated as if they
came from a single test.

For polychotomous outcomes, suppose a second operational test has m units of observation,
s'y of which are in the first category, s'; in the second category, and s'q in the qth category.
Then, the joint likelihood function is given by:

LX=s,X'=5s'10,n+m) =L(X=s 16, n) L(X'=s'16, m)
= 95145, 05,+5,", 93+’ (19)

Thus, for the multinomial distributed likelihood function, data from individual operational
tests can be pooled and treated as if they came from a single test.

7.2  ANALYSES OF CONTROLLED EXPERIMENTS

Suppose an operational test uses an experimental group and a control group for the purposes
of comparison. These are called two-armed tests. For example, an RGS operational test may
involve a group of individuals using the RGS technology compared to a control group not
using the technology. In this case, we are effectively combining the results of two different
experiments using groups from different populations (i.e., they differ by the application of
the ITS technology). Thus, Assumption A discussed in the previous section no longer holds.
However, Assumption B that the observations of the two tests are independent and
Assumption C that there are no biases to internal and external validity (comparability is not
applicable in this situation) are valid for a controlled experiment that is properly designed.
We assume that we are dealing with such an experiment in the following. The a nalytical
approaches discussed above can be easily adapted to accommodate such experiments.
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7.2.1 Measures of Effect

For controlled experiments, one is less interested in outcomes than in comparisons between

outcomes. Measures of effect (MOESs) are used to characterize these comparisons. Let ¢

represent a specific parameter from one of the likelihood functions discussed in subsections
6.1-6.3. Specifically, define:

1 if outcome is continuous
A if outcome is a count (20)
0 if outcome is dichotomous

¢

Then possible measures of effect () are:

» Difference: £=0e- Oc (21)
¢ Ratio: €= Qe (22)
e
: . e=100( %
e Percent difference: €= 100( o - 1) (23)
C

where ¢, is the parameter for the experimental group while ¢, is the parameter for the control

group. For the special case of categorical data when ¢ =0, we can define an additional
measure of effect called the odds ratio given by:

o _0d(1-00)
q)c/(l - (pc)

Since Assumption C holds, there are no biases to internal validity, so that differences
between the experimental and control populations, for example, do not invalidate the
measures of effect. A measure of effect, in this case, represents the true impact of an ITS
technology on an outcome. Moreover, the test circumstances do not differ substantively
from the deployment circumstances so that there are no biases to external validity. For
example, the populations used in the experimental and control groups are representative of
the population that will be using the deployed ITS technology. Thus, the measure of effect is
an accurate representation of the effect expected if the ITS technology is deployed. Since at
this point, no comparisons are being made across operational tests, biases to comparability
are not relevant.

* (dds ratio: (24)
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7.2.2 Joint Likelihood Functions
Since Assumption B, that the observations for the two populations are independent, holds,

the joint likelihood function for the experiment is the product of the likelihood functions for
each of the population groups:

LXe, X¢ 1Dg, D) = L(Xe [PIL(X ¢ D) (25)

7.2.3 Maximum Likelihood Estimates

Because of this independence, the estimation of the parameter vectors, @, and ®,, can be

made independently of each other. The estimates of specific parameters, ¢; (j=e or ¢) can
then be substituted into one of the MOEs defined above.

7.2.4 Bayesian Analyses

The posterior probability, given a likelihood function of the form (16), is
P(®e, Dc1X, X o) = LX 1P)L(X, [D)pr(De)pr(Pe) (26)
Suppose that we have some vector of measures of effect, €, defined by

e=(g1, €, ..., &) = f(De, D) (27)
where the number of measures of effect, s, is less than or equal to the number of parameters,
p. The different definitions of measures of effect described in equations (12)-(15) have the
property of involving only comparisons of a single parameter for the experimental and

control groups. More complicated functions involving two or more distinct parameters for
the experimental and control groups were not considered. Without loss of generality, we can

let the s measures of effect be associated with the last s parameters in the vector ®. Thus, the
vector @; (j=e or ¢) can be written as:

D5 = (Gj15 s Pjp-so O p-s+ls s Pjp) (28)

In this case, the individual measures of effect can be expressed as:
&; = (0 p-s+i» Oc p-s+i) (29)

fori=1, ...,s. Equations (20) can be solved for the ¢, p-s+i giving:

Oc ps+i = &(E» Oc p-s+i) 30)

Substituting (21) into (19) for j=e then gives:
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De = (De1s «ees De p-s» g€ p-s+ls Qc pstidseees g(scp’ dcp)) (31)

Finally, substituting (22) into (17) the posterior probability can be expressed as a function of
the vector ((I>e' , ©¢, €) given by:

P(®e, Dc, € 1 Xe ,Xo) = cL(Xe | Be, £)L(Xc| De)pr(Pe, £)pr(®e) (32)
where:
e = (e, s Pepes) (33)

If we are exclusively interested in the measures of effect €, then we can consider the marginal

probability for €, which is obtained by integrating over the "nuisance" parameters (De, De),
and is given by:

Pe!Xe X = [P(@, e, &1Xe Xo) (34)
R

where R denotes the region over which ((I)e' , @) is defined.

7.3  BIASES IN CONTROLLED EXPERIMENTS

Before any fusion of data can take place among empirical studies, it is necessary to adjust
each of these studies for biases to internal validity. Part of Assumption C referring to
internal biases is relaxed in this discussion. The appropriate adjustments for the different
types of internal biases are outlined in the following subsections.

7.3.1 Dilution and Contamination

Dilution may occur when some of the individuals in the experimental group may not be fully
exposed to the ITS technology, while contamination may occur if some of the individuals in

the control group receive some exposure to the ITS technology. Let ¢; represent a biased
outcome parameter (i=e for dilution and i=c for contamination). Leto; (0< o;<1)bea

measure of exposure of group i to an alternative. Thus, if i=e then ¢t is a measure of the
experimental group's exposure to some alternative other than the ITS technology. This
alternative may be identical to that for the control group or it may be different from that of
the control group. Similarly, if i=c then o is interpreted as a measure of the control group's

exposure to an alternative different from that of the control group. This alternative may be
the ITS technology to which the experimental group is exposed or it may once again be
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different. In either case, denote the parameter associated with this alternative as ¢g. This
parameter can be modeled as:

io = Bide+ (1-Bdc (35)

Thus for the experimental group (i=e), B = 0 means that the dilutants experienced the same

exposure as the control group. Values of B > 0 imply that the dilutants experienced some
level of technology between the experimental and control groups.

Similarly, for the control group (i=c), B.= 1 means that the contaminants experience the

same exposure as the experimental group and values of B < 1 imply that the contaminants
experience some level of technology between the experimental and control groups.

The biased parameter (for i=e or ¢) can then be written as:
¢ = (1 - 05)ds+ Cdio (36)

Equations (35) can be substituted into equations (36) which are then solved for ¢ and ¢,
The unbiased measure of effect is then given by e = ¢ - ¢c.

The parameters o; and B; can be estimated from available evidence or may be determined
subjectively. If there is evidence on either of these parameters, then likelihood functions can

be expressed as L(xq, | o) or L(xg | B) and these likelihood functions can then be incorporated
into a maximum likelihood or Bayesian analysis.

7.3.2 Measurement Errors

When measurement errors occur, the value assigned to an outcome may be different from the
true value. If an accident rate is obtained for some baseline population, the measured rate
may be an underestimate of the true rate because of under-reporting. If surveys, for example,
provide independent information about the level of under-reporting, then this information can
be used to relate the measured rate to the true rate by a multiplicative constant. More
generally, measurement errors can be handled by means of a linear transformation of the
measured outcome:

¢ =v+0o 37
where ¢' is the measured outcome and ¢ is the irue outcome.

For the special case when the outcome ¢ is a probability of an event occurring (e.g., an
accident), then (37) can be written as:



¢=C+w)o+y(1-¢) (38)

The term (y + @) can be interpreted as the probability of an individual actually having an

accident being reported as having had an accident, while 7y is the probability of an individual
not having had an accident being reported as one who did. These parameters may be
estimated from empirical evidence or may be determined subjectively.

7.3.3 Confounding Factors

When the setting, environment, or the characteristics of the individuals in the experimental
and control groups differ, adjustments must be made to “"standardize" across the two arms of
the empirical study.

A simple approach to handling confounding factors is to consider the hypothetical possibility
that the individuals in the experimental group were instead placed in the control group. Let ¢

be the outcome associated with this group, while ¢' is the outcome associated with the
original control group. Then the relationship between the two outcomes may be taken to be:

¢ =vo' (39)

where v is the factor that adjusts the control group for its differences from the experimental
group. The parameter v may be estimated on the basis of available evidence or can be
determined subjectively. Sensitivity analyses can be performed with various values of v.

A more comprehensive way to deal with confounding factors is to treat the differences
between the two groups as covariates. For example, data may be available about the
characteristics of the individuals participating in the empirical study. Denote these

characteristics by vector X = (xy, Xp, ..., Xp). Then an outcome ¢ may be regarded as a
function of these characteristics, ¢ = f(X).

More specifically, for continuous outcomes defined between oo, the parameter | can be
regarded as a linear function of the characteristics given by:

L =ag+a1x) +aX2 + ... + 4nXm (40)

For outcomes that are counts, the parameter A is a continuous variable defined between zero
and +oo. Taking the natural logarithm of A converts it to a continuous variable defined
between oo, 50 that an appropriate functional form for A may be:



In(A) = ag + a1In(xy) + azln(xz )+ ... + apIn(xy,) 41)

Finally for dichotomous outcomes, a function of X must be selected such that the parameter
0 is limited between zero and unity. Such a function is the logistics function defined by:

1

8=1% exp(ag + a1X1 + X3 + ... + AXm)

(42)

This equation can be rearranged to yield an expression in terms of the logarithm of the odds
ratio:

ln(l%?) = ap + a1ln(x1) + azln(xz )+ ... + apln(xpm) @9

The functional forms in (40)-(42) can be substituted into the appropriate likelihood functions.
The parameters ao, aj, ..., ayp can then be estimated using either the maximum likelihood
technique or Bayesian analysis.

7.3.4 Censoring

If the individuals who drop out of an empirical study have characteristics different from
those who stay to completion, then observed outcomes for those who remain may be

different from the outcomes if the group were kept intact. Let ¢' be the outcome parameter
for the group that stayed to completion and ¢4 be the outcome associated with the fraction A
of the group that dropped out. Then the true outcome ¢ is given by:

¢ =(1-2)¢"+Adq (44)

The parameter ¢4 can be estimated from available evidence or may be determined
subjectively. More sophisticated approaches based on the characteristics of the individuals
in the groups can be devised but the discussion of these approaches is beyond the scope of
this study.

74  EXTERNAL BIASES

In the following subsections, the part of Assumption C referring to the absence of biases to
external validity is relaxed. The population in an empirical study may not be representative
of the population using the deployed ITS technology. In many cases, the ITS technology
used in the operational test may not be identical to the ultimately deployed technology. In
3111th cases, it is necessary to adjust outcomes and measures of effect to account for these
differences.
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7.4.1 Population Bias

If the empirical study population characteristics are different from those of the deployment
population and information is available about the distributions of these characteristics in the
populations, then adjustments can be made for these differences. The approach is similar to
the one outlined in subsection 7.3.3 to handle confounding factors within an empirical study.

If this sort of detailed information is not available, then multiplicative models of the kind
discussed in equation (39) can be used. The parameter v is the factor that adjusts some

outcome ¢' associated with an experimental population for its difference from outcome ¢ for
the deployment population. This parameter either may be estimated on the basis of available
evidence or may be determined subjectively. If empirical evidence is available, then a

likelihood function for v may be established. For subjective estimates, sensitivity analyses
can be performed using different values of v.

In the case of a two arm experiment, it may sometimes be better to work in terms of a
measure of effect €. Suppose we are evaluating a collision avoidance technology and are
comparing an experimental group with a control group. Assume that th.ere are no biases to
internal validity or, if there are, they have been already resolved. Let 8, (i=e or c) be the
probability of having an accident for the ith group in the empirical study. On the other hand,
0; (i=e or c) is the probability of the ith group in the deployment population to have an
accident. We note, however, that the population of the empirical study differs in age
composition from that of the deployment population so that we would expect that 9 # 6; (i=e
or ¢). Consequently, a measure of effect that i is the dlfference between the accndent rates of

the control and experimental groups (i.e., &' = 9 - 8 ) would be expected to be different from

the difference for the deployment population (i.e., € = 8, - 6,). However, if the rate of
reduction of accidents is approximately independent of age, then a measure of effect that is

the ratio of outcomes for the empirical study (i.e., €'=8 /8 ) would be approximately equal

to the ratio of the outcomes for the deployment group (i.e., € = 0/8¢).
7.4.2 Technology Bias

If the ITS technology used in the empirical study is different from the technology to be
deployed and measurements have been made regarding the impacts of these differences, then
appropriate adjustments can be made. For example, an RGS system based on GPS guidance
may result in more driver errors leading to wrong turns and hence more travel time than an
RGS system based on DGPS. The number of wrong turns can be used as an variable to
characterize the difference between the GPS and DGPS based systems. A model similar to
equation (41) can then be specified to incorporate this variable as well as driver and other
characteristics contributing to trip time. Sensitivity analyses can then be conducted with



respect to values of this variable to determine the potential impact of DGPS technology on
trip time.

7.5 COMPARABILITY BIAS

Comparability biases need to be addressed when the results of different empirical studies are
to be combined. Comparability bias is similar to external bias in the sense that the test
populations, ITS technology, test settings, or environments must be comparable across
empirical studies in order to combine their results. Consequently, the discussions of external
biases also apply here. The populations across empirical studies may differ in terms of
characteristics affecting outcomes and the technologies examined in the studies may not be
identical.

In addition, when combining results of different empirical studies, differences in the
definitions of outcomes may lead to a comparability bias. In such cases, it is necessary to

adjust some outcome ¢; for a test so that it is definitionally comparable to the outcome ¢; of

a second test. This may be accomplished by means of a functional transformation, ¢, = f(¢;)
a specific form of which is the linear transformation:

$2=2a+bo; (45)
where a and b are translation and scale parameters, respectively.

Another instance of comparability bias occurs when outcomes of empirical studies depend
upon the time duration of the test. For example, accident rates from different empirical
studies may need to be scaled in proportion to the time durations of the studies.

If a study involves the observation of accident rates for a variety of time periods, then a
functional form for the accident rate in terms of the time duration can be expressed. One
such functional form taken from equation (42) is:

o 1
i = I +exp(ag+a;T;)

(46)

where T; is the ith time duration. The parameter ag and a; can be estimated using a
likelihood function. Once the parameters are estimated, then equation (46) could be used to
estimate the accident rate for any time duration T.
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APPENDIX A

EXPERIMENTATION IN OTHER FIELDS

A.l  Experimentation in the Physical Sciences

In the physical sciences, controlled laboratory experimentation plays a prominent rolein
extending knowledge about physical phenomena. An experiment is conducted by holding all
but two variables fixed through careful regulation of the physical environment and then
observing the dependence of one variable upon another. In this way, the functional
dependency between the two variables can be identified. For example, the relationship
between temperature and the pressure of afixed volume of gas may be established by
incrementally changing temperature over a specified range and observing the resulting
pressure. Such an experiment is a controlled experiment since the volume of the gasis held
fixed. Similarly, an experiment can be conducted to determine the dependence of gas
pressure on the volume by holding the temperature fixed and varying the volume. The
empirically observed functional dependency may be used in the formation of atheory of the
phenomenon being observed. Conversely, the empirically determined dependency may be
used to confirm an already existing theory.

A.2  Experimentation in the Bio-Medical and Social Sciences

This controlled experimentation paradigm has been carried over (with some modifications) to
the biological, medical, and social sciences. In biology, the study of fruit flies, rats, or other
living organisms replaces the inanimate physical systems studied in chemistry or physics.

For example, abiologist may be interested in the impact of diet on the life expectancy of rats.
In theideal, he would like to conduct the experiment on a population of absolutely identical
rats, splitting them into two groups-an experimental group containing rats on a “healthy” diet
and a control group with rats on a*“normal” diet. Unfortunately, such a population of
absolutely identical rats cannot be found. Instead, the biologist may randomlv split some
population of rats into the two groups. If theinitial rat population is large enough, any
differences among the rats in the two groups will be statistically small. If a biologist either
conscioudly or inadvertently selects the more healthy rats for one group and the less hedlthy
ones for the other, then the results of the experiment will be biased. Thisiscaled a
selectivity bias and when it occurs, it may have to be corrected by the use of sophisticated
statistical methodologies.

In the social sciences and in medicine, the units of observation are often humans or groups of
humans. Experimentation with humans presents many problems and the controlled
experimentation paradigm is often difficult to apply in its rigorous form. Unlike rats, human
experimental subjects cannot be caged. Hence, if humans are involved in a diet study,
whether or not all the members of the “hedlthy” diet group keep to the diet is sometimesin
guestion. Similarly, selectivity bias often plays a larger role in human experimentation. A
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certain amount of voluntary participation is involved in many human experiments and
whether or not an individual self-selects to partake in an experiment may be driven by factors
not under the experimenter’s control.

An experiment involving a control and an experimental group is called a two-armed
experiment. In some cases, the control group may be eliminated. If an outcome of interest
has already been measured for the general population, then the general population may, in
essence, be regarded as a “control group.” The advantage of such an approach is that the
limited resources for an experiment can be focused on collecting data from a larger
experimental group. The outcome in the experimental group can then be compared to that of
the general population. Of course, to avoid a biased comparison, the experimental group
should have a composition similar to that of the general population.

A.3 Naturally Occurring Experiments

Attempts to conduct a controlled experiment are sometimes not fully successful resulting in
only a partially controlled experiment. Moreover, in some contexts, it is either impossible or
otherwise impractical to apply the controlled experimental paradigm. Astronomy is a prime
example whereby researchers must rely on physical phenomena that occurred far distant in
space and time. The possibility of controlled experimentation in such a situation is scant.
Another example is in economic research. The feasibility of experimentation on large scale
economic structures or even on smaller collections of individuals engaging in economic
activity is limited. In these cases, researchers collect data on “naturally occurring
experiments’ and exploit the variation in the data for their statistical analyses. Multivariate
statistical methodologies allow the researcher to “control” for confounding variables and to
identify the dependencies among the variables of interest. This approach is opportunistic in
the sense that data variation occurring naturally for some physical, biological, or social
phenomenon is exploited through the use of these statistical methodologies.
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APPENDIX B
DATA COLLECTION

Raw data is the immediate result of the data collection process. This raw data must be
processed to yield refined data. The refined data may then be further transformed, combined,
and aggregated to provide "views" of progressively coarser granularity. This data collection
and refinement process is depicted graphically in Figure 1.

Coarse Coarse Grained
Granularity —> Analyses

A

Fine —p» Fine Grained
Granularity / \ Analyses

Raw Data Inputs

Figure 1: Data Refinement Pyramid

Raw data enters the bottom of the pyramid in the form of data collection forms or inputs from
automated data capture mechanisms. The raw data from the various sources must be
validated, further processed, and fused before it enters into the lowest level of the pyramid as
refined data. This first level of refined data is then input to the second level for additional
processing, validation, fusion, and aggregation. The second level thus consists of data at a
coarser level of granularity than the first level. This process is continued until the top of the
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pyramid is reached, at which point the data is at the coarsest level of granularity. Analyses
may be performed on any of the levels of granularity as shown in Figure 1.

As an example, an operational test may be conducted to collect data for individual drivers
partaking in atest of an RGS. At thefirst level, detailed data may be maintained for link
times and distances, driver behaviors such as eye movements and their times of occurrence,
detailed information about “close calls’ and driver errors, and their associated times, the real-
time inputs of data from a traffic management system, and various characteristics of the
driver.

The second level may involve data for each driver which is aggregated over link times to
provide origination/destination times and over link distances to provide origination/
destination distances. Moreover, this level may include only summary statistics about driver
behaviors and data inputs from the traffic management system. This process of data
reduction and aggregation may continue to the top level of the pyramid at which point the
data may include aggregate statistics such as the number of drivers in the experimental and
control groups, the origination/destination trip traveled, their average travel times and travel
distances, the average number of “close calls,” etc.

The data from the bottomost level of the pyramid supports, for example, micro-analyses of
man-machine interface issues for which a second-by-second accounting of driver behavior is
relevant At an intermediate level of aggregation, the data could support detailed analyses of
the determinants of travel time or distance, while at the topmost level various “comparison”
guestions can be addressed regarding the differential impacts of the RGS system versus its
not being used.

The data pyramid does not necessarily imply that the data at any given level is maintained in
aphysical database. A given level may be produced on an “as-needed” basis by applying to
the lower levels software utilities that appropriately aggregate and process the data. This
processing may include the generation of composite or derived measures. A specific analysis
may even require data from one of the higher levels to provide contextual information. For
example, aggregated traffic management information can be used for a driver level analysis
to provide a measure of traffic congestion during a test.

We expect each empirical study to have a data pyramid of the sort discussed in Figure 1. For
empirical studies concerned with asingle ITS user service, the raw data collected may differ
in substantive ways. Differences may occur in the sizes as well as the characteristics of the
populations in the study, the settings in which the study takes place, the experimental designs
used to collect the data, and the specifics of the ITS technology being tested. We must be
able to account and adjust for these differences if a reasonable basis for meta-evaluation isto
be found.
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