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SECTION 1

INTRODUCTION

The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 calls for the
deployment of surface transportation technologies for Intelligent Transportation Systems
(ITS). A major purpose of ITS is to enhance the ability of this country to compete in the
global economy. Among the objectives of the ITS program are the improvement of
productivity and economic efficiency, the enhancement of transportation safety, the
facilitation of traveler mobility, and the meeting of environmental concerns. In order to
achieve these objectives, the ITS program is identifying advanced and emerging information,
communications, control, and electronic technologies that have the potential to improve
surface transportation.

The National ITS Program Plan calls for the development and ultimate deployment of
twenty-nine interrelated user services. These user services are characterized in terms of the
benefits for different users rather than in terms of their underlying technologies. The user
services have been grouped into seven bundles as follows:

. Travel and transportation management

. Travel demand management

. Public transportation operations

. Commercial vehicle operations

. Electronic payment

. Emergency management

. Advanced vehicle control and safety systems

Among the initiatives included in the National ITS Program Plan is the conduct of
operational tests related to the various user services. These tests are conducted for a
prototype system on a scale smaller than full deployment over a relatively short period of
time in a “real-world” (as opposed to a controlled laboratory or otherwise contrived)
environment. One purpose of the tests is the evaluation of systems of ITS technologies that
are wholly or in part beyond the R&D stage, but not yet ready for full deployment. Another
purpose is the evaluation of user service benefits. Such evaluations will help to identify the
more promising services and technologies (in terms of their impacts on ITS program
objectives) for further development and deployment.

Multiple operational tests may be conducted for a particular user service. These tests are
evaluated to provide one or more outcome measures of interest. When evaluation results for
a number of operational tests become available, then it may be possible to synthesize results
across tests to arrive at composite outcome measures. This synthesis process, called meta-
evaluation, can provide information that is useful for determining the value of full scale
deployment of an ITS user service. In addition, the utility of additional operational tests can
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be determined by determining the statistical power of these tests and estimating the
probability that they will deliver results in a specified range.

1.1 PURPOSE OF STUDY

The purpose of this study is to develop a data fusion framework for the meta-evaluation of
ITS effectiveness. This framework provides a systematic capability for adjusting and
synthesizing data from different tests to:

. Objectively synthesize evaluation measures and their uncertainties across multiple
tests

. Identify the need for and characteristics of additional operational tests

. Estimate input parameters (and their uncertainties) for simulation models

. Provide ITS decision makers with information to guide decisions on the
development and deployment of ITS systems

1.2 ORGANIZATION

In the next section, we discuss operational test characteristics that have particular bearing on
meta-evaluation. In Section 3, desirable attributes of a meta-evaluation methodology are
discussed and meta-evaluation is placed in the context of the experimental paradigm. Section
4 discusses the various types of empirical data and their measurement, while Section 5
discusses experimental statistical biases. Statistical inference as applied to meta-evaluation is
discussed in Section 6. Finally, various approaches for data fusion are discussed in Section 7.
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SECTION 2

CHARACTERISTICS OF OPERATIONAL TESTS

In this section, we discuss the differing characteristics of operational tests that may have an
impact on the development of a meta-evaluation methodology. The methodology must be
able to accommodate these differences.

Although different operational tests may involve the same ITS user service, the specific
technologies providing the user service may differ among the tests. For example, in-vehicle
route guidance systems (RGSs) may come in a variety of forms with varying accuracies for
vehicle location and different means of providing dynamic route guidance.

Test settings are also expected to vary widely. Operational tests for a given ITS user service
may be conducted by different teams, in a variety of geographic locations, and in different
time frames. The mean characteristics of the populations under study (e.g., drivers using
RGSs) may vary among the tests. Prototype ITS services being tested might differ from the
one(s) that are ultimately deployed. Operational tests may also vary with respect to
experimental design and be subject to different study-specific biases. Finally, operational
tests may only provide indirect evidence of outcome measures of interest (e.g., close calls in
place of accidents) and some of the tests may have gaps regarding certain outcome measures
of interest.

An operational test may include one or more empirical studies. For example, an operational
test for an RGS might involve an empirical study of yoked drivers (an equipped and an
unequipped vehicle traveling the same origin/destination trip at the same time of day). The
operational test may also support another empirical study of equipped and unequipped
drivers not specifically paired with each other. Still a third empirical study may involve in-
vehicle cameras to observe the details of driver interaction with the navigational device. All
of these studies may provide data with regard to outcomes of interest such as travel time or
safety. A relevant question then becomes how to merge results from these tests to draw
meaningful conclusions about an outcome of interest.

Because of the relatively small scales of operational tests, system-wide impacts of large scale
deployments may not be directly inferable from a test. For example, an operational test may
not directly provide information about the impact of larger market penetrations of RGSs on
traffic congestion or safety. Similarly, an operational test to evaluate weigh-in-motion
(WIM) technologies that facilitate commercial vehicle inspections may only provide direct
evidence of the time savings for an appropriately equipped commercial vehicle. The
systemic effects of time savings of non-equipped vehicles (because of shorter queues at
weigh stations) are difficult to measure directly. However, simulation or queuing models can
be used for this purpose. In such cases, an operational test is used to determine values of
some of the parameters for the calibration of a model. For example, operational tests for a
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WIM technology can provide data regarding the service times for vehicles in a weigh station
queue; this data can then be used in a queuing model to determine the systemic impacts of a
specific level of WIM market penetration. When multiple operational tests or empirical
studies have been conducted, then “best” estimates of these parameters can be obtained by
merging results from the different sources. In addition, the “goodness” of the estimate can be
inferred either from the parameter’s probability distribution or from its variance.
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SECTION 3

META-EVALUATION

The traditional focus of statistics has been the analysis and interpretation of individual
empirical studies. There are a variety of statistical methods appropriate for analyzing
empirical data from different experimental designs. These methods allow the analyst to test
hypotheses and to estimate parameters using approaches such as the maximum likelihood
technique or Bayesian analysis. On the other hand, the task of adjusting and combining
individual pieces of evidence from different studies has generally been left to subjective
judgment. Typically, evidence from different empirical studies has been used to form an
opinion-based impression regarding outcomes of interest.

The medical research community was among the first to recognize the need for a rigorous
analytical methodology to facilitate the objective fusion of results from different empirical
studies. Meta-evaluation techniques based on classical statistical methods have been
developed for this purpose. A representative sampling of these techniques may be found in
Wachter and Straf (1990). The techniques generally apply to empirical studies with a single
outcome of interest each of which is conducted using a common experimental design.
Moreover, it is generally assumed that there are no biases to either internal or external
validity. These techniques involve either the pooling of data across empirical studies from
which an outcome is computed or the combining of outcomes of a number of studies directly
on the basis of different weights. Other approaches based on Bayesian analyses have been
discussed by Eddy et al. (1990) and by Louis (1991).

3.1 REQUIREMENTS FOR A META-EVALUATION METHODOLOGY

Given the differences among operational tests cited in Section 2, there are a number of
desirable characteristics that should be present in a meta-evaluation methodology. The
methodology should be able to accommodate the incremental synthesis of evidence as it
becomes available from operational tests. Another requirement for the methodology is that it
be able to combine evidence from different tests not necessarily having a common
experimental design. The ability to adjust individual pieces of evidence for biases is also a
desirable feature. Finally, the methodology should be able to synthesize and incorporate
indirect evidence for outcome measures, and to quantify and incorporate subjective
judgments when necessary.

3.2 EXPERIMENTATION TO ASSESS ITS SERVICES

In order to further establish a basis for ITS meta-evaluation, it is necessary to understand the
role of the experimental paradigm in the conduct of operational tests. Operational tests to

3-l



assess ITS services are intended to take place in a “real world” context. From purely the
perspective of evaluation, ITS operational testing should ideally be conducted as an orderly
and controlled experimental process. However, this ideal experimental paradigm is often
difficult to achieve. Attempts to conduct fully controlled experiments may fall short of
expectations. Since ITS systems involve human subjects, it is often difficult to create and
maintain an ideal experimental environment. In Appendix A, we discuss the experimental
paradigm as applied to the physical, biological/medical, and social sciences in order to
provide a context for the following discussion of operational tests.

Population samples chosen for an operational test may include one or more experimental
populations, which are subjected to various versions of an ITS technology, and a control
population that does not use the technology. In some cases, a control population is not a part
of the operational test. Instead, data may be collected with respect to a background
population independent of the operational test. For example, an operational test may be
conducted for a collision avoidance technology with only an experimental population. The
impact of the technology may be discerned by comparing the accident rates of the
experimental population with those of a background population collected from insurance
statistics.

Experimentation as applied to ITS operational tests resembles the experimentation of the
biomedical or social sciences rather than that of the physical sciences. The experimental
environment may be imperfect and adjustments may be required to correct for biases and
other problems. Quantitative evidence from either the operational test or external sources
may be used to estimate these adjustments while, in some instances, the estimates may be
subjective. In this latter case, sensitivity analyses may be conducted to determine the
criticality of the subjective assumptions on outcomes.

A bias can occur within an operational test when there are differences between the
experimental and control groups. For example, in an empirical study for an RGS the mean
age of the experimental group using the navigational device might be different from the mean
age of the control group. These age differences may partially account for differences in
outcomes of interest so that the true effect of an ITS technology can be obscured. This is an
example of a bias to internal validity.

Even if there are no differences between the control and experimental groups, their
characteristics may be different from the population at large. For example, the drivers
selected to partake in an RGS operational test may not be representative of the population as
a whole. In this case, a comparison of outcomes between the experimental and control
groups may not be a true representation of the effect of a technology in the general
population, thus leading to a bias in external validity.

There may also be a bias to external validity when there are differences between a prototype
lTS technology undergoing operational testing and the actual technology that will be
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deployed. The impact of the ITS technology under operational test may be different from the
deployed technology.

In each of the examples cited above, statistical corrections must be made, whenever possible,
to adjust for problems in the experimental environment.
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SECTION 4

EMPIRICAL DATA AND ITS MEASUREMENT

The purpose of an empirical study is to measure or otherwise characterize some empirical
phenomenon in order to identify patterns, underlying laws of behavior, or explanations of
outcomes. An important activity in the conduct of an empirical study involves the collection
of data. Data collection and its processing is discussed in Appendix B. A datum is a
measurement of an attribute of some subject of study, called a unit of observation. An
attribute is a feature or property of interest associated with the unit of observation. The
attribute may refer to either an outcome or an explanatory factor that is believed to affect an
outcome for the unit of observation. The collection of attributes for a single unit of
observation is called an observation.

For example, the unit of observation for an RGS operational test might be an individual
driver on a specific origination/destination trip and the test may involve many such units of
observation. The data collected for such a test can include outcomes such as travel times and
travel distances, as well as explanatory variables such as the time of day the trip was
undertaken, driver age, gender, and driving experience.1

For the purposes of modeling, the outcomes and explanatory factors are represented by
variables. Measurement is the process of assigning values to these variables through the
empirical observation of each unit of observation. The variables may be related by functional
relationships that can be expressed by means of equations. For example, the outcome
variable of travel time may be assumed to be functionally related to the specific
origination/destination trip, the time of day the trip was undertaken, driver age, gender, and
driving experience. In this case, the outcome variable is said to be an endogenous variable
while the explanatory variables are exogenous variables. If a particular functional
relationship is hypothesized, then it can be empirically tested by using the data that was
collected across the units of observation.

1 The classification of a datum as an outcome is in part dependent on au implicit model of the relationships
among the data and the purposes of the empirical study. In some cases, au outcome in one model will be the
explanatory variable in another. Variables may be equivalently classified as exogenous (i.e., explanatory) or
endogenous (i.e., explained). Whether or not a variable is endogenous then depends upon its use in a model
or submodel.
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4.1 DATA TYPES

Identifying a variable by its data type establishes the rules by which a variable is measured.
In this study, we use a typology of three major data types, namely:

. Continuous

. Integer counts

. Categorical

As will be discussed below, the data type of an outcome or endogenous variable determines
the types of statistical techniques that can be applied to its analysis.

4.1.1 Continuous Data Type

A variable that is continuous is one that is defined on all or part of the scale of real numbers.
Travel time, expressed in minutes, or travel distance, expressed in miles and fractions
thereof, are continuous variables defined between zero and infinity.

4.1.2 Integer Count Data Type

The count data type is appropriate for variables with an integer scale. Examples of such
variables are the number of wrong turns or the number of “close calls” experienced by a
driver during a specific origination/destination trip in an RGS experiment.

4.1.3 Categorical Data Type

The categorical data type is appropriate for variables whose values represent distinct
categories. A variable may be dichotomous, having two categories, or polychotomous with
more than two categories. An example of a dichotomous variable may be one measuring
failure or success in some activity. For example, observing a group of drivers over some
time period, a success might be defined for a specific driver as the absence of an accident
during this period, while a failure would be the occurrence of one or more accidents in the
same period. Polychotomous categorical variables are represented in the transportation
literature by modal choices among multiple transportation alternatives Rassam et al. [ 1971].
For example, an automated traveler information system may affect the choices of air travelers
who have four alternatives for getting to the airport: private automobile, taxi, bus, or rail.

The modal classification of transportation alternatives is an example of a categorical variable
that has no implied underlying ordering to the categories. Each value is a distinct category
that serves as a label for the category. A variable of this kind is called a nominal categorical
variable.

An example of a categorical variable with an implied underlying ordering is one
characterizing the severity of a vehicle accident. The categories might be: vehicle damage
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only, personal injury, and fatality. In this case, it is possible to rank-order the categories
according to some criterion, namely, accident severity. Each category possesses a unique
position relative to the other categories. However, we do not know the “distance” between
categories. A categorical variable with this property is an ordinal categorical variable.

4.1.4 Levels of Measurement

The different data types discussed above represent a hierarchy of levels of measurement. The
categorical data type is the “lowest” level of measurement in the sense that the “higher” levels
of measurement can be subsumed into the lower levels. Thus, a count can be subsumed in a
categorical measure by grouping counts into two or more categories. For example, a
population of drivers with an age distribution may be classified into three groups: 16-25
years, 26-40 years, and >40 years. Similarly, a continuous variable may be subsumed in a
count or a categorical measure. For example, age is inherently a continuous variable if
measured by years and fractions thereof. But for conceptual convenience, age is usually
expressed as a positive integer.
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SECTION 5

STATISTICAL BIASES

The meta-evaluation problem of combining results across operational tests is complicated by
the expectation that operational tests may have statistical biases. In the ideal, an empirical
study should be conducted such that its results, given the test circumstances, are a true
reflection of the impact of a technology. However, the characteristics of the experimental
and control groups may differ and these differences may, in part, contribute to the outcomes.
Consequently, the true impact of the technology might not be discerned. In such cases, those
factors that cause the evaluation measure to inaccurately reflect the impact of the technology
in the test circumstances contribute to biases of internal validity.

On the other hand, if the operational test circumstances differ from the expected deployment
circumstances, then the operational test may lack external validity. There may be no
substantive differences between the experimental and control groups, but their characteristics
may be different from the characteristics of the population that will ultimately be using the
deployed ITS technology. In such cases, directly applying the results from the operational
tests to the deployment population is not reasonable without first adjusting for biases to
external validity.

When results from different operational tests are to be combined, it is first necessary to
ensure that the individual operational tests are internally valid. Since the test circumstances
for all of the tests may not be the same, combining the tests without further adjustments may
lead to comparability biases. In such cases, there are three courses of action. We may argue
that the biases are small enough so as not to materially affect the evaluation measures. At the
other extreme, we can argue that the biases are so large and uncorrectable as to make the
operational test useless for application to the target circumstances. Or, we may try to adjust
the experimental results to account for the biases.

For the last course of action, the factors potentially biasing an experiment must be identified.
The directions of these biases need to be established, an attempt made to quantify their
magnitudes, and a model built to incorporate the biases into the analysis. We discuss the
various types of biases in greater detail in the following subsections.

5.1 BIASES TO INTERNAL VALIDITY

The difference between an outcome for an experimental group and that for a control group,
called a measure of effect, may be caused by biases to internal validity. Biases to internal
validity include:



. Dilution of the experimental sample

. Contamination of the experimental sample

. Errors in measuring the outcomes

. Confounding factors

. Censoring (loss to follow-up)

To correct for biases to internal validity, models are required that relate the biased outcomes
to the outcomes of interest (by way of additional parameters, if necessary). In the following
subsections, we discuss examples of these various biases to internal validity.

5.1.1 Dilution

Dilution may occur when some of the individuals in the group using a technology do not
actually use it. This situation can occur for any number of reasons. There may be willful
intent on the parts of some individuals not to use the technology. In comparing accident
mortality rates for drivers of seatbelt equipped vehicles with those without seatbelts, we must
consider the possibility that some drivers may choose not to use their seatbelts. In this case,
estimates of the reduction of vehicular accident mortality attributed to seatbelt use may be
biased downward.

The equipment supporting a technology may be in “fail-mode” for certain periods of time.
For example, communication failures or overloads may result in non-functional driver
navigation aids during certain periods. In such cases, the driver may respond like a driver in
a non-equipped vehicle.

5.1.2 Contamination

Contamination occurs when individuals who are not supposed to be exposed to a particular
application of an ITS technology (e.g., in the control group) manage to get it on their own.
Consider an experiment to determine the effects of different levels of training on the effective
use of an ITS technology. One group may receive a high level of training, another group
only a moderate level, and a third group no training at all. The groups with moderate or no
training can introduce contamination by otherwise obtaining additional training on their own.
In this case, the effect of training on outcomes would be biased downward.

5.1.3 Measurement Errors

The method used in the measurement of an outcome may not be accurate. If accident rates
for a baseline group are obtained from insurance records, the rates may be biased downward
since not all drivers may have insurance and not all accidents may be reported. Therefore, an
accident rate comparison of an experimental group using a technology against a baseline
group may lead to downward bias when measuring the effect of the technology on accident
rates.
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5.1.4 Confounding Factors

Confounding occurs when there are differences between the experimental and control groups
other than in the application of an ITS technology. These differences may relate to the
setting, to environmental differences, or to the characteristics of the individuals in the two
groups. If the experimental group using the technology differs from the control group on the
basis of some characteristics of the individuals and these characteristics can affect an
outcome, then the effect of the characteristics might be falsely attributed to the effect (or lack
of effect) of the technology. Selectivity bias is an instance of a confounding factor. For
example, an individual may self-select or be selected by the experimenter with respect to one
or more factors that can influence outcomes.

5.1.5 Censoring

Individuals in either an experimental or control group may drop out before completion of the
experiment. If these individuals are different than the group as a whole with respect to their
contributions to an outcome, then the outcome estimated from the remaining individuals may
not represent that of the whole group. An experimental group for an RGS test may
experience attrition as participants who experience difficulties using the equipment either
discontinue its use or otherwise drop out of the testing program. This is an example of
censoring and appropriate statistical techniques should be applied to account for it.

5.2 BIASES TO EXTERNAL VALIDITY

Differences that could affect outcomes between the operational test circumstances and those
of the actual deployment may lead to biases to external validity. Biases to external validity
also come into play when comparisons are made across experiments. These biases can be
classified as population bias or technology bias.

5.2.1 Population Bias

Population bias occurs when there are differences between the experimental population of the
operational test and the expected target population for the deployed ITS technology. For
example, a population bias might arise if the group used to test a collision avoidance
technology differs substantially from the general population of drivers in terms of age or
gender composition. The measure of effect from such an experiment cannot be directly
applied to the general population without adjustments.

5.2.2 Technology Bias

Differences between the ITS technology used in the operational test and the one that will
ultimately be deployed may lead to a technology bias. If an operational test is conducted for
an RGS based on GPS technology, then measures of effect, such as travel time, may be
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different from those of a planned deployment of RGS using DGPS. Since the two systems
differ with respect to locational accuracy, the probability for driver error (leading to wrong
turns) may be greater for the GPS system, resulting in longer travel times.

5.3 COMPARABILITY BIAS

When conducting a meta-evaluation, the measures of effect across tests that are to be
combined must be comparable. In order for these measures to be comparable, they must first
be adjusted to correct for internal biases. Ideally, there should be no differences among the
operational test circumstances that could affect the comparability of the measures of effect.
If differences exist, then appropriate adjustments must be made to account for these
differences, thus correcting for comparability bias. The measures of effect for the individual
tests may then be adjusted for additional biases to external validity and combined, or they
may be combined and then adjusted for these biases.

Comparability bias may be caused by differences in measurement across operational tests.
These differences in many cases are definitional in nature. For example, several operational
tests for RGSs may provide data on driver behavior such as the number of near accidents or
close calls. These measures might be defined differently among the operational tests and,
therefore, must be adjusted in order to achieve comparability.

Finally, differences across operational tests with respect to the time durations over which the
tests are conducted can lead to a comparability bias if the definition of an outcome of interest
depends on the time period. For example, the accident rates associated with a study
conducted over a one year time period would differ from those of a six month study. The
results of these operational tests again need to be standardized with respect to the time
interval in order to make them comparable to each other. Moreover, the seasonal interval
over which the six month study was conducted may require additional adjustments to the
accident rates.
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SECTION 6

STATISTICAL INFERENCE

In the absence of the various biases discussed previously, the merging of results across
operational tests is relatively straightforward. Outcomes and measures of effect derived from
operational tests are random variables. This randomness can be represented by means of
parameterizcd probability distributions. Given empirical data on outcomes (and possibly
explanatory variables) for units of observation from one or more operational tests, a
likelihood function can be specified. The likelihood function represents the probability of
observing the actual empirical outcomes of the units of observation associated with the
operational tests. If the outcome for one unit of observation is statistically independent from
the outcome of another (i.e., the usual case), then the likelihood function can be expressed as
a product over the units of observation of the probability distributions evaluated at each
outcome.

The likelihood function depends upon the parameters of the probability distributions. The
values of these parameters determine the shape of the probabilities and hence of the
likelihood function. Given the likelihood function, two approaches exist for the estimation
of these parameters. The maximum likelihood approach selects parameters so as to
maximize the likelihood function. This approach gives point estimates for the parameters
and their associated standard deviations.

An alternative is to use the likelihood function as part of a Bayesian analysis to determine a
distribution function for the parameters. The means and standard deviations of the
parameters can then be computed from the distribution function.

If biases are present, then the likelihood function must be appropriately adjusted. In the next
three subsections, we initially consider the case of no biases for each of the three data types.
Likelihood functions are established for continuous, count, and categorical data types.
Subsection 6.4 discusses two alternatives for the estimation of the parameters of the
likelihood functions.

6.1 CONTINUOUS DATA TYPE

Outcomes that are continuous data types defined between _ +oo are often characterized by
normal probability distributions. Many continuous outcome variables are distributed in such
a way as to have at least an approximately normal distribution2. For an ITS operational test,
with an outcome zi associated with the ith individual (i=l ,...,n) in a sample of n individuals,
the normal probability distribution is:

2 Exceptions exist to this statement. For example, if an outcome variable were the mean time between events
(such as failures of a system) then an exponential or Erlang distribution might be more appropriate.
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6.4 SOLUTION METHODOLOGIES

In the following subsections, we discuss alternative methods to estimate the parameters
associated with the likelihood functions discussed above. There are two basic approaches for
parameter estimation:

l Maximum likelihood technique
l Bayesian analysis

The approaches are discussed in terms of a generic likelihood function denoted by
L(X I@) where X is a vector of observed test outcomes and 0 =
of associated likelihood function parameters.

($1, $2, . . . , @) is the vector

6.4.1 Maximum Likelihood Technique

The maximum likelihood technique revolves around the selection of parameter values such
that the likelihood function is maximized. The values of the parameters accomplishing this
maximization are point estimates denoted by &. The parameters of the likelihood functions
discussed in the previous sections are all continuous so that differential calculus techniques
may be used to find their values.

It is generally convenient to work in terms of the natural log of the likelihood function
defined by:

LL(X I@) = In[L(X IQ)]

Since taking the logarithm of the likelihood function is a monotonic transformation, the
parameter values that maximize the logarithm of the likelihood function will also maximize
the likelihood function. The advantage of the logarithmic transformation of the likelihood
function is that it converts products into sums which are easier to manipulate.

Thus, the parameter values that maximize the log-likelihood function are found by solving
the equations:

&LL(X I@) = 0
845

for i = 1, . . . . p (11)

for $b. The solutions to equation (11) are guaranteed to maximize the likelihood function if
the Hessian, which is the matrix of the second partial derivatives with respect to Q, of the log-
likelihood function, is negative semidefinite. Equations (11) are generally not solvable
through analytical means and must be solved by means of numerical iterative techniques.
The Hessian may also be used to estimate the variances and covariances of the parameters as
well as the associated confidence intervals. A discussion of these techniques is beyond the
scope of this paper but the interested reader may refer to Kendall and Stuart [ 19611.
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APPENDIX A

EXPERIMENTATION IN OTHER FIELDS

A.1 Experimentation in the Physical Sciences

In the physical sciences, controlled laboratory experimentation plays a prominent role in
extending knowledge about physical phenomena. An experiment is conducted by holding all
but two variables fixed through careful regulation of the physical environment and then
observing the dependence of one variable upon another. In this way, the functional
dependency between the two variables can be identified. For example, the relationship
between temperature and the pressure of a fixed volume of gas may be established by
incrementally changing temperature over a specified range and observing the resulting
pressure. Such an experiment is a controlled experiment since the volume of the gas is held
fixed. Similarly, an experiment can be conducted to determine the dependence of gas
pressure on the volume by holding the temperature fixed and varying the volume. The
empirically observed functional dependency may be used in the formation of a theory of the
phenomenon being observed. Conversely, the empirically determined dependency may be
used to confirm an already existing theory.

A.2 Experimentation in the Bio-Medical and Social Sciences

This controlled experimentation paradigm has been carried over (with some modifications) to
the biological, medical, and social sciences. In biology, the study of fruit flies, rats, or other
living organisms replaces the inanimate physical systems studied in chemistry or physics.
For example, a biologist may be interested in the impact of diet on the life expectancy of rats.
In the ideal, he would like to conduct the experiment on a population of absolutely identical
rats, splitting them into two groups-an experimental group containing rats on a “healthy” diet
and a control group with rats on a “normal” diet. Unfortunately, such a population of
absolutely identical rats cannot be found. Instead, the biologist may randomlv split some
population of rats into the two groups. If the initial rat population is large enough, any
differences among the rats in the two groups will be statistically small. If a biologist either
consciously or inadvertently selects the more healthy rats for one group and the less healthy
ones for the other, then the results of the experiment will be biased. This is called a
selectivity bias and when it occurs, it may have to be corrected by the use of sophisticated
statistical methodologies.

In the social sciences and in medicine, the units of observation are often humans or groups of
humans. Experimentation with humans presents many problems and the controlled
experimentation paradigm is often difficult to apply in its rigorous form. Unlike rats, human
experimental subjects cannot be caged. Hence, if humans are involved in a diet study,
whether or not all the members of the “healthy” diet group keep to the diet is sometimes in
question. Similarly, selectivity bias often plays a larger role in human experimentation. A
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certain amount of voluntary participation is involved in many human experiments and
whether or not an individual self-selects to partake in an experiment may be driven by factors
not under the experimenter’s control.

An experiment involving a control and an experimental group is called a two-armed
experiment. In some cases, the control group may be eliminated. If an outcome of interest
has already been measured for the general population, then the general population may, in
essence, be regarded as a “control group.” The advantage of such an approach is that the
limited resources for an experiment can be focused on collecting data from a larger
experimental group. The outcome in the experimental group can then be compared to that of
the general population. Of course, to avoid a biased comparison, the experimental group
should have a composition similar to that of the general population.

A.3 Naturally Occurring Experiments

Attempts to conduct a controlled experiment are sometimes not fully successful resulting in
only a partially controlled experiment. Moreover, in some contexts, it is either impossible or
otherwise impractical to apply the controlled experimental paradigm. Astronomy is a prime
example whereby researchers must rely on physical phenomena that occurred far distant in
space and time. The possibility of controlled experimentation in such a situation is scant.
Another example is in economic research. The feasibility of experimentation on large scale
economic structures or even on smaller collections of individuals engaging in economic
activity is limited. In these cases, researchers collect data on “naturally occurring
experiments” and exploit the variation in the data for their statistical analyses. Multivariate
statistical methodologies allow the researcher to “control” for confounding variables and to
identify the dependencies among the variables of interest. This approach is opportunistic in
the sense that data variation occurring naturally for some physical, biological, or social
phenomenon is exploited through the use of these statistical methodologies.
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pyramid is reached, at which point the data is at the coarsest level of granularity. Analyses
may be performed on any of the levels of granularity as shown in Figure 1.

As an example, an operational test may be conducted to collect data for individual drivers
partaking in a test of an RGS. At the first level, detailed data may be maintained for link
times and distances, driver behaviors such as eye movements and their times of occurrence,
detailed information about “close calls” and driver errors, and their associated times, the real-
time inputs of data from a traffic management system, and various characteristics of the
driver.

The second level may involve data for each driver which is aggregated over link times to
provide origination/destination times and over link distances to provide origination/
destination distances. Moreover, this level may include only summary statistics about driver
behaviors and data inputs from the traffic management system. This process of data
reduction and aggregation may continue to the top level of the pyramid at which point the
data may include aggregate statistics such as the number of drivers in the experimental and
control groups, the origination/destination trip traveled, their average travel times and travel
distances, the average number of “close calls,” etc.

The data from the bottomost level of the pyramid supports, for example, micro-analyses of
man-machine interface issues for which a second-by-second accounting of driver behavior is
relevant At an intermediate level of aggregation, the data could support detailed analyses of
the determinants of travel time or distance, while at the topmost level various “comparison”
questions can be addressed regarding the differential impacts of the RGS system versus its
not being used.

The data pyramid does not necessarily imply that the data at any given level is maintained in
a physical database. A given level may be produced on an “as-needed” basis by applying to
the lower levels software utilities that appropriately aggregate and process the data. This
processing may include the generation of composite or derived measures. A specific analysis
may even require data from one of the higher levels to provide contextual information. For
example, aggregated traffic management information can be used for a driver level analysis
to provide a measure of traffic congestion during a test.

We expect each empirical study to have a data pyramid of the sort discussed in Figure 1. For
empirical studies concerned with a single ITS user service, the raw data collected may differ
in substantive ways. Differences may occur in the sizes as well as the characteristics of the
populations in the study, the settings in which the study takes place, the experimental designs
used to collect the data, and the specifics of the ITS technology being tested. We must be
able to account and adjust for these differences if a reasonable basis for meta-evaluation is to
be found.
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